PROSES METABOLISME KARBOHIDRAT


PROSES METABOLISME KARBOHIDRAT
(Bagian 2)
Heru Santoso Wahito Nugroho heruswn@gmail.com
Sekilas tentang metabolisme
Lintasan metabolisme dapat digolongkan menjadi 3 kategori:
1.  Lintasan anabolik (penyatuan/pembentukan)
Ini merupakan lintasan yang digunakan pada sintesis senyawa pembentuk struktur dan mesin tubuh. Salah satu contoh dari kategori ini adalah sintesis protein.

2.  Lintasan katabolik (pemecahan)
Lintasan ini meliputi berbagai proses oksidasi yang melepaskan energi bebas, biasanya dalam bentuk fosfat energi tinggi atau unsur ekuivalen pereduksi, seperti rantai respirasi dan fosforilasi oksidatif.

3.  Lintasan amfibolik (persimpangan)
Lintasan ini memiliki lebih dari satu fungsi dan terdapat pada persimpangan metabolisme sehingga bekerja sebagai penghubung antara lintasan anabolik dan lintasan katabolik. Contoh dari lintasan ini adalah siklus asam sitrat (Siklus Kreb).

Karbohidrat, lipid dan protein sebagai makanan sumber energi harus dicerna menjadi molekul-molekul berukuran kecil agar dapat diserap. Berikut ini adalah hasil akhir pencernaan nutrien tersebut:
Ø  Hasil pencernaan karbohidrat: monosakarida terutama glukosa
Ø  Hasil pencernaan lipid: asam lemak, gliserol dan gliserida
Ø  Hasil pencernaan protein: asam amino
Semua hasil pencernaan di atas diproses melalui lintasan metaboliknya masing-masing menjadi Asetil KoA, yang kemudian akan dioksidasi secara sempurna melalui siklus asam sitrat dan dihasilkan energi berupa adenosin trifosfat (ATP) dengan produk buangan karbondioksida (CO2).

SIKLUS KREB
ENERGI
CO2

Ilustrasi skematis dari lintasan metabolik dasar


Siklus asam sitrat sebagai lintasan amfibolik dalam metabolisme (perhatikan jalur persimpangan jalur katabolisme dan anabolisme) (dipetik dari: Murray dkk. Biokimia Harper)
Pentingnya glukosa
Glukosa merupakan karbohidrat terpenting. Dalam bentuk glukosalah massa karbohidrat makanan diserap ke dalam aliran darah, atau ke dalam bentuk glukosalah karbohidrat dikonversi di dalam hati, serta dari glukosalah semua bentuk karbohidrat lain dalam tubuh dapat dibentuk. Glukosa merupakan bahan bakar metabolik utama bagi manusia dan bahan bakar universal bagi janin. Glukosa diubah menjadi karbohidrat lain misalnya glikogen untuk simpanan, ribose untuk membentuk asam nukleat, galaktosa dalam laktosa susu, bergabung dengan lipid atau dengan protein, contohnya glikoprotein dan proteoglikan.
Jalur-jalur metabolisme karbohidrat
Terdapat beberapa jalur metabolisme karbohidrat yaitu glikolisis, oksidasi piruvat, siklus asam sitrat, glikogenesis, glikogenolisis serta glukoneogenesis.
Secara ringkas, jalur-jalur metabolisme karbohidrat dijelaskan sebagai berikut:
1.  Glukosa sebagai bahan bakar utama metabolisme akan mengalami glikolisis (dipecah) menjadi 2 piruvat jika tersedia oksigen. Dalam tahap ini dihasilkan energi berupa ATP.
2.  Selanjutnya masing-masing piruvat dioksidasi menjadi asetil KoA. Dalam tahap ini dihasilkan energi berupa ATP.
3.  Asetil KoA akan masuk ke jalur persimpangan yaitu siklus asam sitrat. Dalam tahap ini dihasilkan energi berupa ATP.
4.  Jika sumber glukosa berlebihan, melebihi kebutuhan energi kita maka glukosa tidak dipecah, melainkan akan dirangkai menjadi polimer glukosa (disebut glikogen). Glikogen ini disimpan di hati dan otot sebagai cadangan energi jangka pendek. Jika kapasitas penyimpanan glikogen sudah penuh, maka karbohidrat harus dikonversi menjadi jaringan lipid sebagai cadangan energi jangka panjang.
5.  Jika terjadi kekurangan glukosa dari diet sebagai sumber energi, maka glikogen dipecah menjadi glukosa. Selanjutnya glukosa mengalami glikolisis, diikuti dengan oksidasi piruvat sampai dengan siklus asam sitrat.
6.  Jika glukosa dari diet tak tersedia dan cadangan glikogenpun juga habis, maka sumber energi non karbohidrat yaitu lipid dan protein harus digunakan. Jalur ini dinamakan glukoneogenesis (pembentukan glukosa baru) karena dianggap lipid dan protein harus diubah menjadi glukosa baru yang selanjutnya mengalami katabolisme untuk memperoleh energi.


Beberapa jalur metabolisme karbohidrat
Glikolisis
Glikolisis adalah katabolisme glukosa yang berlangsung di dalam sitosol semua sel, menjadi:
1.  asam piruvat, pada suasana aerob (tersedia oksigen)
2.  asam laktat, pada suasana anaerob (tidak tersedia oksigen)
Lintasan detail  glikolisis (dipetik dari: Murray dkk. Biokimia Harper)


Secara rinci, tahap-tahap dalam lintasan glikolisis adalah sebagai berikut (pada setiap tahap, lihat dan hubungkan dengan Gambar Lintasan detail metabolisme karbohidrat):
1.        Glukosa mengalami fosforilasi menjadi glukosa-6 fosfat dengan dikatalisir oleh enzim heksokinase atau glukokinase pada sel parenkim hati dan sel Pulau Langerhans pancreas. ATP diperlukan sebagai donor fosfat dan bereaksi sebagai kompleks Mg-ATP. Satu fosfat berenergi tinggi digunakan, sehingga hasilnya adalah ADP. (-1P)

                        Mg2+
Glukosa + ATP   à    glukosa 6-fosfat + ADP

2.        Glukosa 6-fosfat diubah menjadi Fruktosa 6-fosfat dengan bantuan enzim fosfoheksosa isomerase. Enzim ini hanya bekerja pada anomer µ-glukosa 6-fosfat.

µ-D-glukosa 6-fosfat « µ-D-fruktosa 6-fosfat
3.        Fruktosa 6-fosfat diubah menjadi Fruktosa 1,6-bifosfat dengan bantuan enzim fosfofruktokinase. ATP menjadi donor fosfat, sehingga hasilnya adalah ADP.(-1P)

µ-D-fruktosa 6-fosfat + ATP « D-fruktosa 1,6-bifosfat

4.        Fruktosa 1,6-bifosfat dipecah menjadi gliserahdehid 3-fosfat dan dihidroksi aseton fosfat. Reaksi ini dikatalisir oleh enzim aldolase (fruktosa 1,6-bifosfat aldolase).
D-fruktosa 1,6-bifosfat« D-gliseraldehid 3-fosfat + dihidroksiaseton fosfat

5.        Gliseraldehid 3-fosfat dapat berubah menjadi dihidroksi aseton fosfat dan sebaliknya (reaksi interkonversi). Reaksi bolak-balik ini mendapatkan katalisator enzim fosfotriosa isomerase.

D-gliseraldehid 3-fosfat « dihidroksiaseton fosfat
6.        Gliseraldehid 3-fosfat dioksidasi menjadi 1,3-bifosfogliserat dengan bantuan enzim gliseraldehid 3-fosfat dehidrogenase. Dihidroksi aseton fosfat bisa diubah menjadi gliseraldehid 3-fosfat maka juga dioksidasi menjadi 1,3-bifosfogliserat.

D-gliseraldehid 3-fosfat + NAD+ + Pi« 1,3-bifosfogliserat + NADH + H+

Atom-atom hidrogen yang dikeluarkan dari proses oksidasi ini dipindahkan kepada NAD+ yang terikat pada enzim. Pada rantai respirasi mitokondria akan dihasilkan tiga fosfat berenergi tinggi. (+3P)
Catatan:
Karena fruktosa 1,6-bifosfat yang memiliki 6 atom C dipecah menjadi Gliseraldehid 3-fosfat dan dihidroksi aseton fosfat yang masing-masing memiliki 3 atom C, dengan demikian terbentuk 2 molekul gula yang masing-masing beratom C tiga (triosa). Jika molekul dihidroksiaseton fosfat juga berubah menjadi 1,3-bifosfogliserat, maka dari 1 molekul glukosa pada bagian awal, sampai dengan tahap ini akan menghasilkan 2 x 3P = 6P. (+6P)
7.        Pada 1,3 bifosfogliserat, fosfat posisi 1 bereaksi dengan ADP menjadi ATP dibantu enzim fosfogliserat kinase. Senyawa sisa yang dihasilkan adalah 3-fosfogliserat.

1,3-bifosfogliserat + ADP « 3-fosfogliserat + ATP

Catatan:
Karena ada dua molekul 1,3-bifosfogliserat, maka energi yang dihasilkan adalah 2 x 1P = 2P. (+2P)

8.       3-fosfogliserat diubah menjadi 2-fosfogliserat dengan bantuan enzim fosfogliserat mutase.

3-fosfogliserat « 2-fosfogliserat

9.        2-fosfogliserat diubah menjadi fosfoenol piruvat (PEP) dengan bantuan enzim enolase. Enolase dihambat oleh fluoride. Enzim ini bergantung pada Mg2+ atau Mn2+.

2-fosfogliserat « fosfoenol piruvat + H2O

10.     Fosfat pada PEP bereaksi dengan ADP menjadi ATP dengan bantuan enzim piruvat kinase. Enol piruvat yang terbentuk dikonversi spontan menjadi keto piruvat.

Fosfoenol piruvat + ADP à piruvat + ATP
Catatan:
Karena ada 2 molekul PEP maka terbentuk 2 molekul enol piruvat sehingga total hasil energi pada tahap ini adalah 2 x 1P = 2P. (+2P)
11.    Jika tak tersedia oksigen (anaerob), tak terjadi reoksidasi NADH melalui pemindahan unsur ekuivalen pereduksi. Piruvat akan direduksi oleh NADH menjadi laktat dengan bantuan enzim laktat dehidrogenase.

Piruvat + NADH + H+ à L(+)-Laktat + NAD+
Dalam keadaan aerob, piruvat masuk mitokondria, lalu dikonversi menjadi asetil-KoA, selanjutnya dioksidasi dalam siklus asam sitrat menjadi CO2.
Kesimpulan:
Pada glikolisis aerob, energi yang dihasilkan terinci sebagai berikut:
-   hasil tingkat substrat                                        :+ 4P
-   hasil oksidasi respirasi                                                :+ 6P
-   jumlah                                                           :+10P
-   dikurangi untuk aktifasi glukosa dan fruktosa 6P   : - 2P
 + 8P
Pada glikolisis anaerob, energi yang dihasilkan terinci sebagai berikut:
-   hasil tingkat substrat                                       :+ 4P
-   hasil oksidasi respirasi                                                :+ 0P
-   jumlah                                                           :+ 4P
-   dikurangi untuk aktifasi glukosa dan fruktosa 6P   : - 2P
             + 2P
Oksidasi piruvat
Dalam jalur ini, piruvat dioksidasi (dekarboksilasi oksidatif) menjadi Asetil-KoA, yang terjadi di dalam mitokondria sel. Jalur ini merupakan penghubung antara glikolisis dengan siklus Kreb’s. Jalur ini juga merupakan konversi glukosa menjadi asam lemak dan lemak dan sebaliknya dari senyawa non karbohidrat menjadi karbohidrat.
Lintasan oksidasi piruvat (dipetik dari: Murray dkk. Biokimia Harper)



Rangkaian reaksi kimia yang terjadi dalam lintasan oksidasi piruvat adalah sebagai berikut:
1.        Dengan adanya TDP (thiamine diphosphate), piruvat didekarboksilasi menjadi hidroksietil TDP terikat oleh komponen kompleks enzim piruvat dehidrogenase. Produk sisa yang dihasilkan adalah CO2.
2.        Hidroksietil TDP bertemu dengan lipoamid teroksidasi, suatu kelompok prostetik dihidroksilipoil transasetilase untuk membentuk asetil lipoamid, selanjutnya TDP lepas.
3.        Selanjutnya dengan adanya KoA-SH, asetil lipoamid akan diubah menjadi asetil KoA, dengan hasil sampingan berupa lipoamid tereduksi.
4.        Siklus ini selesai jika lipoamid tereduksi direoksidasi oleh flavoprotein yang mengandung FAD, pada kehadiran dihidrolipoil dehidrogenase. Flavoprotein tereduksi dioksidasi oleh NAD+, sehingga memindahkan ekuivalen pereduksi kepada rantai respirasi.

Piruvat + NAD+ + KoA à Asetil KoA + NADH + H+ + CO2
Siklus asam sitrat
Siklus asam sitrat juga sering disebut sebagai siklus Kreb’s atau siklus asam trikarboksilat dan berlangsung di dalam mitokondria. Siklus asam sitrat merupakan jalur akhir bersama oksidasi karbohidrat, lipid dan protein. Siklus asam sitrat merupakan rangkaian reaksi katabolisme asetil KoA yang menghasilkan energi dalam bentuk ATP.
Selama proses oksidasi asetil KoA, terbentuk ekuivalen pereduksi berbentuk hidrogen atau elektron. Unsur ekuivalen pereduksi ini kemudian memasuki rantai respirasi (proses fosforilasi oksidatif) menghasilkan ATP. Pada keadaan tanpa oksigen (anoksia) atau kekurangan oksigen (hipoksia) terjadi hambatan total pada siklus tersebut.

Siklus asam sitrat sebagai jalur bersama metabolisme karbohidrat, lipid dan protein
 (dipetik dari: Murray dkk. Biokimia Harper)


Lintasan detail Siklus Kreb’s (dipetik dari: Murray dkk. Biokimia Harper)

Reaksi-reaksi pada siklus asam sitrat diuraikan sebagai berikut:
1.    Kondensasi asetil KoA dengan oksaloasetat membentuk sitrat, dikatalisir sitrat sintase.

Asetil KoA + Oksaloasetat + H2O à Sitrat + KoA
2.   Sitrat dikonversi menjadi isositrat oleh enzim akonitase (akonitat hidratase) yang mengandung besi Fe2+. Konversi berlangsung dalam 2 tahap, yaitu: dehidrasi menjadi sis-akonitat dan rehidrasi menjadi isositrat.

Sitrat
Sis-akonitat
(terikat enzim)
Isositrat
H2O
H2O

3.    Isositrat mengalami dehidrogenasi menjadi oksalosuksinat dibantu enzim isositrat dehidrogenase, yang bergantung NAD+.

Isositrat + NAD+ « Oksalosuksinat « µ–ketoglutarat + CO2 + NADH + H+
                                       (terikat enzim)
Kemudian terjadi dekarboksilasi menjadi µ–ketoglutarat yang juga dikatalisir oleh enzim isositrat dehidrogenase. Mn2+ atau Mg2+ berperan penting dalam reaksi dekarboksilasi.
4.    µ–ketoglutarat mengalami dekarboksilasi oksidatif menjadi suksinil KoA dengan bantuan kompleks µ–ketoglutarat dehidrogenase, dengan kofaktor misalnya TDP, lipoat, NAD+, FAD serta KoA.

µ–ketoglutarat + NAD+ + KoA à Suksinil KoA + CO2 + NADH + H+
5.    Suksinil KoA berubah menjadi suksinat dengan bantuan suksinat tiokinase (suksinil KoA sintetase).
Suksinil KoA + Pi + ADP « Suksinat + ATP + KoA
6.    Suksinat mengalami dehidrogenasi menjadi fumarat dengan peran suksinat dehidrogenase yang mengandung FAD.

Suksinat + FAD « Fumarat + FADH2
7.    Fumarat mendapatkan penambahan air menjadi malat dengan bantuan enzim fumarase (fumarat hidratase)
Fumarat + H2O « L-malat
8.    Malat mengalami hidrogensi menjadi oksaloasetat dengan katalisator malat dehidrogenase, suatu reaksi yang memerlukan NAD+.

L-Malat + NAD+ « oksaloasetat + NADH + H+

PROSES METABOLISME KARBOHIDRAT
(Bagian 2)
Heru Santoso Wahito Nugroho heruswn@gmail.com
Sekilas tentang metabolisme
Lintasan metabolisme dapat digolongkan menjadi 3 kategori:
1.  Lintasan anabolik (penyatuan/pembentukan)
Ini merupakan lintasan yang digunakan pada sintesis senyawa pembentuk struktur dan mesin tubuh. Salah satu contoh dari kategori ini adalah sintesis protein.

2.  Lintasan katabolik (pemecahan)
Lintasan ini meliputi berbagai proses oksidasi yang melepaskan energi bebas, biasanya dalam bentuk fosfat energi tinggi atau unsur ekuivalen pereduksi, seperti rantai respirasi dan fosforilasi oksidatif.

3.  Lintasan amfibolik (persimpangan)
Lintasan ini memiliki lebih dari satu fungsi dan terdapat pada persimpangan metabolisme sehingga bekerja sebagai penghubung antara lintasan anabolik dan lintasan katabolik. Contoh dari lintasan ini adalah siklus asam sitrat (Siklus Kreb).

Karbohidrat, lipid dan protein sebagai makanan sumber energi harus dicerna menjadi molekul-molekul berukuran kecil agar dapat diserap. Berikut ini adalah hasil akhir pencernaan nutrien tersebut:
Ø  Hasil pencernaan karbohidrat: monosakarida terutama glukosa
Ø  Hasil pencernaan lipid: asam lemak, gliserol dan gliserida
Ø  Hasil pencernaan protein: asam amino
Semua hasil pencernaan di atas diproses melalui lintasan metaboliknya masing-masing menjadi Asetil KoA, yang kemudian akan dioksidasi secara sempurna melalui siklus asam sitrat dan dihasilkan energi berupa adenosin trifosfat (ATP) dengan produk buangan karbondioksida (CO2).

SIKLUS KREB
ENERGI
CO2

Ilustrasi skematis dari lintasan metabolik dasar


Siklus asam sitrat sebagai lintasan amfibolik dalam metabolisme (perhatikan jalur persimpangan jalur katabolisme dan anabolisme) (dipetik dari: Murray dkk. Biokimia Harper)
Pentingnya glukosa
Glukosa merupakan karbohidrat terpenting. Dalam bentuk glukosalah massa karbohidrat makanan diserap ke dalam aliran darah, atau ke dalam bentuk glukosalah karbohidrat dikonversi di dalam hati, serta dari glukosalah semua bentuk karbohidrat lain dalam tubuh dapat dibentuk. Glukosa merupakan bahan bakar metabolik utama bagi manusia dan bahan bakar universal bagi janin. Glukosa diubah menjadi karbohidrat lain misalnya glikogen untuk simpanan, ribose untuk membentuk asam nukleat, galaktosa dalam laktosa susu, bergabung dengan lipid atau dengan protein, contohnya glikoprotein dan proteoglikan.
Jalur-jalur metabolisme karbohidrat
Terdapat beberapa jalur metabolisme karbohidrat yaitu glikolisis, oksidasi piruvat, siklus asam sitrat, glikogenesis, glikogenolisis serta glukoneogenesis.
Secara ringkas, jalur-jalur metabolisme karbohidrat dijelaskan sebagai berikut:
1.  Glukosa sebagai bahan bakar utama metabolisme akan mengalami glikolisis (dipecah) menjadi 2 piruvat jika tersedia oksigen. Dalam tahap ini dihasilkan energi berupa ATP.
2.  Selanjutnya masing-masing piruvat dioksidasi menjadi asetil KoA. Dalam tahap ini dihasilkan energi berupa ATP.
3.  Asetil KoA akan masuk ke jalur persimpangan yaitu siklus asam sitrat. Dalam tahap ini dihasilkan energi berupa ATP.
4.  Jika sumber glukosa berlebihan, melebihi kebutuhan energi kita maka glukosa tidak dipecah, melainkan akan dirangkai menjadi polimer glukosa (disebut glikogen). Glikogen ini disimpan di hati dan otot sebagai cadangan energi jangka pendek. Jika kapasitas penyimpanan glikogen sudah penuh, maka karbohidrat harus dikonversi menjadi jaringan lipid sebagai cadangan energi jangka panjang.
5.  Jika terjadi kekurangan glukosa dari diet sebagai sumber energi, maka glikogen dipecah menjadi glukosa. Selanjutnya glukosa mengalami glikolisis, diikuti dengan oksidasi piruvat sampai dengan siklus asam sitrat.
6.  Jika glukosa dari diet tak tersedia dan cadangan glikogenpun juga habis, maka sumber energi non karbohidrat yaitu lipid dan protein harus digunakan. Jalur ini dinamakan glukoneogenesis (pembentukan glukosa baru) karena dianggap lipid dan protein harus diubah menjadi glukosa baru yang selanjutnya mengalami katabolisme untuk memperoleh energi.


Beberapa jalur metabolisme karbohidrat
Glikolisis
Glikolisis adalah katabolisme glukosa yang berlangsung di dalam sitosol semua sel, menjadi:
1.  asam piruvat, pada suasana aerob (tersedia oksigen)
2.  asam laktat, pada suasana anaerob (tidak tersedia oksigen)
Lintasan detail  glikolisis (dipetik dari: Murray dkk. Biokimia Harper)


Secara rinci, tahap-tahap dalam lintasan glikolisis adalah sebagai berikut (pada setiap tahap, lihat dan hubungkan dengan Gambar Lintasan detail metabolisme karbohidrat):
1.        Glukosa mengalami fosforilasi menjadi glukosa-6 fosfat dengan dikatalisir oleh enzim heksokinase atau glukokinase pada sel parenkim hati dan sel Pulau Langerhans pancreas. ATP diperlukan sebagai donor fosfat dan bereaksi sebagai kompleks Mg-ATP. Satu fosfat berenergi tinggi digunakan, sehingga hasilnya adalah ADP. (-1P)

                        Mg2+
Glukosa + ATP   à    glukosa 6-fosfat + ADP

2.        Glukosa 6-fosfat diubah menjadi Fruktosa 6-fosfat dengan bantuan enzim fosfoheksosa isomerase. Enzim ini hanya bekerja pada anomer µ-glukosa 6-fosfat.

µ-D-glukosa 6-fosfat « µ-D-fruktosa 6-fosfat
3.        Fruktosa 6-fosfat diubah menjadi Fruktosa 1,6-bifosfat dengan bantuan enzim fosfofruktokinase. ATP menjadi donor fosfat, sehingga hasilnya adalah ADP.(-1P)

µ-D-fruktosa 6-fosfat + ATP « D-fruktosa 1,6-bifosfat

4.        Fruktosa 1,6-bifosfat dipecah menjadi gliserahdehid 3-fosfat dan dihidroksi aseton fosfat. Reaksi ini dikatalisir oleh enzim aldolase (fruktosa 1,6-bifosfat aldolase).
D-fruktosa 1,6-bifosfat« D-gliseraldehid 3-fosfat + dihidroksiaseton fosfat

5.        Gliseraldehid 3-fosfat dapat berubah menjadi dihidroksi aseton fosfat dan sebaliknya (reaksi interkonversi). Reaksi bolak-balik ini mendapatkan katalisator enzim fosfotriosa isomerase.

D-gliseraldehid 3-fosfat « dihidroksiaseton fosfat
6.        Gliseraldehid 3-fosfat dioksidasi menjadi 1,3-bifosfogliserat dengan bantuan enzim gliseraldehid 3-fosfat dehidrogenase. Dihidroksi aseton fosfat bisa diubah menjadi gliseraldehid 3-fosfat maka juga dioksidasi menjadi 1,3-bifosfogliserat.

D-gliseraldehid 3-fosfat + NAD+ + Pi« 1,3-bifosfogliserat + NADH + H+

Atom-atom hidrogen yang dikeluarkan dari proses oksidasi ini dipindahkan kepada NAD+ yang terikat pada enzim. Pada rantai respirasi mitokondria akan dihasilkan tiga fosfat berenergi tinggi. (+3P)
Catatan:
Karena fruktosa 1,6-bifosfat yang memiliki 6 atom C dipecah menjadi Gliseraldehid 3-fosfat dan dihidroksi aseton fosfat yang masing-masing memiliki 3 atom C, dengan demikian terbentuk 2 molekul gula yang masing-masing beratom C tiga (triosa). Jika molekul dihidroksiaseton fosfat juga berubah menjadi 1,3-bifosfogliserat, maka dari 1 molekul glukosa pada bagian awal, sampai dengan tahap ini akan menghasilkan 2 x 3P = 6P. (+6P)
7.        Pada 1,3 bifosfogliserat, fosfat posisi 1 bereaksi dengan ADP menjadi ATP dibantu enzim fosfogliserat kinase. Senyawa sisa yang dihasilkan adalah 3-fosfogliserat.

1,3-bifosfogliserat + ADP « 3-fosfogliserat + ATP

Catatan:
Karena ada dua molekul 1,3-bifosfogliserat, maka energi yang dihasilkan adalah 2 x 1P = 2P. (+2P)

8.       3-fosfogliserat diubah menjadi 2-fosfogliserat dengan bantuan enzim fosfogliserat mutase.

3-fosfogliserat « 2-fosfogliserat

9.        2-fosfogliserat diubah menjadi fosfoenol piruvat (PEP) dengan bantuan enzim enolase. Enolase dihambat oleh fluoride. Enzim ini bergantung pada Mg2+ atau Mn2+.

2-fosfogliserat « fosfoenol piruvat + H2O

10.     Fosfat pada PEP bereaksi dengan ADP menjadi ATP dengan bantuan enzim piruvat kinase. Enol piruvat yang terbentuk dikonversi spontan menjadi keto piruvat.

Fosfoenol piruvat + ADP à piruvat + ATP
Catatan:
Karena ada 2 molekul PEP maka terbentuk 2 molekul enol piruvat sehingga total hasil energi pada tahap ini adalah 2 x 1P = 2P. (+2P)
11.    Jika tak tersedia oksigen (anaerob), tak terjadi reoksidasi NADH melalui pemindahan unsur ekuivalen pereduksi. Piruvat akan direduksi oleh NADH menjadi laktat dengan bantuan enzim laktat dehidrogenase.

Piruvat + NADH + H+ à L(+)-Laktat + NAD+
Dalam keadaan aerob, piruvat masuk mitokondria, lalu dikonversi menjadi asetil-KoA, selanjutnya dioksidasi dalam siklus asam sitrat menjadi CO2.
Kesimpulan:
Pada glikolisis aerob, energi yang dihasilkan terinci sebagai berikut:
-   hasil tingkat substrat                                        :+ 4P
-   hasil oksidasi respirasi                                                :+ 6P
-   jumlah                                                           :+10P
-   dikurangi untuk aktifasi glukosa dan fruktosa 6P   : - 2P
 + 8P
Pada glikolisis anaerob, energi yang dihasilkan terinci sebagai berikut:
-   hasil tingkat substrat                                       :+ 4P
-   hasil oksidasi respirasi                                                :+ 0P
-   jumlah                                                           :+ 4P
-   dikurangi untuk aktifasi glukosa dan fruktosa 6P   : - 2P
             + 2P
Oksidasi piruvat
Dalam jalur ini, piruvat dioksidasi (dekarboksilasi oksidatif) menjadi Asetil-KoA, yang terjadi di dalam mitokondria sel. Jalur ini merupakan penghubung antara glikolisis dengan siklus Kreb’s. Jalur ini juga merupakan konversi glukosa menjadi asam lemak dan lemak dan sebaliknya dari senyawa non karbohidrat menjadi karbohidrat.
Lintasan oksidasi piruvat (dipetik dari: Murray dkk. Biokimia Harper)



Rangkaian reaksi kimia yang terjadi dalam lintasan oksidasi piruvat adalah sebagai berikut:
1.        Dengan adanya TDP (thiamine diphosphate), piruvat didekarboksilasi menjadi hidroksietil TDP terikat oleh komponen kompleks enzim piruvat dehidrogenase. Produk sisa yang dihasilkan adalah CO2.
2.        Hidroksietil TDP bertemu dengan lipoamid teroksidasi, suatu kelompok prostetik dihidroksilipoil transasetilase untuk membentuk asetil lipoamid, selanjutnya TDP lepas.
3.        Selanjutnya dengan adanya KoA-SH, asetil lipoamid akan diubah menjadi asetil KoA, dengan hasil sampingan berupa lipoamid tereduksi.
4.        Siklus ini selesai jika lipoamid tereduksi direoksidasi oleh flavoprotein yang mengandung FAD, pada kehadiran dihidrolipoil dehidrogenase. Flavoprotein tereduksi dioksidasi oleh NAD+, sehingga memindahkan ekuivalen pereduksi kepada rantai respirasi.

Piruvat + NAD+ + KoA à Asetil KoA + NADH + H+ + CO2
Siklus asam sitrat
Siklus asam sitrat juga sering disebut sebagai siklus Kreb’s atau siklus asam trikarboksilat dan berlangsung di dalam mitokondria. Siklus asam sitrat merupakan jalur akhir bersama oksidasi karbohidrat, lipid dan protein. Siklus asam sitrat merupakan rangkaian reaksi katabolisme asetil KoA yang menghasilkan energi dalam bentuk ATP.
Selama proses oksidasi asetil KoA, terbentuk ekuivalen pereduksi berbentuk hidrogen atau elektron. Unsur ekuivalen pereduksi ini kemudian memasuki rantai respirasi (proses fosforilasi oksidatif) menghasilkan ATP. Pada keadaan tanpa oksigen (anoksia) atau kekurangan oksigen (hipoksia) terjadi hambatan total pada siklus tersebut.

Siklus asam sitrat sebagai jalur bersama metabolisme karbohidrat, lipid dan protein
 (dipetik dari: Murray dkk. Biokimia Harper)


Lintasan detail Siklus Kreb’s (dipetik dari: Murray dkk. Biokimia Harper)

Reaksi-reaksi pada siklus asam sitrat diuraikan sebagai berikut:
1.    Kondensasi asetil KoA dengan oksaloasetat membentuk sitrat, dikatalisir sitrat sintase.

Asetil KoA + Oksaloasetat + H2O à Sitrat + KoA
2.   Sitrat dikonversi menjadi isositrat oleh enzim akonitase (akonitat hidratase) yang mengandung besi Fe2+. Konversi berlangsung dalam 2 tahap, yaitu: dehidrasi menjadi sis-akonitat dan rehidrasi menjadi isositrat.

Sitrat
Sis-akonitat
(terikat enzim)
Isositrat
H2O
H2O

3.    Isositrat mengalami dehidrogenasi menjadi oksalosuksinat dibantu enzim isositrat dehidrogenase, yang bergantung NAD+.

Isositrat + NAD+ « Oksalosuksinat « µ–ketoglutarat + CO2 + NADH + H+
                                       (terikat enzim)
Kemudian terjadi dekarboksilasi menjadi µ–ketoglutarat yang juga dikatalisir oleh enzim isositrat dehidrogenase. Mn2+ atau Mg2+ berperan penting dalam reaksi dekarboksilasi.
4.    µ–ketoglutarat mengalami dekarboksilasi oksidatif menjadi suksinil KoA dengan bantuan kompleks µ–ketoglutarat dehidrogenase, dengan kofaktor misalnya TDP, lipoat, NAD+, FAD serta KoA.

µ–ketoglutarat + NAD+ + KoA à Suksinil KoA + CO2 + NADH + H+
5.    Suksinil KoA berubah menjadi suksinat dengan bantuan suksinat tiokinase (suksinil KoA sintetase).
Suksinil KoA + Pi + ADP « Suksinat + ATP + KoA
6.    Suksinat mengalami dehidrogenasi menjadi fumarat dengan peran suksinat dehidrogenase yang mengandung FAD.

Suksinat + FAD « Fumarat + FADH2
7.    Fumarat mendapatkan penambahan air menjadi malat dengan bantuan enzim fumarase (fumarat hidratase)
Fumarat + H2O « L-malat
8.    Malat mengalami hidrogensi menjadi oksaloasetat dengan katalisator malat dehidrogenase, suatu reaksi yang memerlukan NAD+.

L-Malat + NAD+ « oksaloasetat + NADH + H+
Energi yang dihasilkan dalam siklus asam sitrat
Pada proses oksidasi asetil KoA, dihasilkan 3 molekul NADH dan 1 FADH2. Sejumlah ekuivalen pereduksi dipindahkan ke rantai respirasi dalam membran interna mitokondria. Ekuivalen pereduksi NADH menghasilkan 3 ikatan fosfat berenergi tinggi (esterifikasi ADP menjadi ATP). FADH2 menghasilkan 2 ikatan fosfat berenergi tinggi. Fosfat berenergi tinggi juga dihasilkan pada tingkat siklus (tingkat substrat) saat suksinil KoA diubah menjadi suksinat.
Dengan demikian rincian energi yang dihasilkan dalam siklus asam sitrat adalah:
1. Tiga molekul NADH, menghasilkan                  : 3 X 3P                  =  9P
2. Satu molekul FADH2, menghasilkan                 : 1 x 2P                   =  2P
3. Pada tingkat substrat                                                                 =  1P
Jumlah                                                                                       = 12P

Satu siklus Kreb’s akan menghasilkan energi 3P + 3P + 1P + 2P + 3P    = 12P.
Kalau kita hubungkan jalur glikolisis, oksidasi piruvat dan siklus Kreb’s, akan dapat kita hitung bahwa 1 mol glukosa jika dibakar sempurna (aerob) akan menghasilkan energi dengan rincian sebagai berikut:
1.      Glikolisis                                    :  8P
2.      Oksidasi piruvat (2 x 3P)               :  6P
3.      Siklus Kreb’s (2 x 12P)                 : 24P
Jumlah                                            : 38P

Glikogenesis
Tahap pertama metabolisme karbohidrat adalah pemecahan glukosa (glikolisis) menjadi piruvat. Selanjutnya piruvat dioksidasi menjadi asetil KoA. Akhirnya asetil KoA masuk ke dalam rangkaian siklus asam sitrat untuk dikatabolisir menjadi energi.
Proses di atas terjadi jika kita membutuhkan energi, misalnya untuk berpikir, mencerna makanan, bekerja dan sebagainya. Jika jumlah glukosa melampaui kebutuhan, maka dirangkai menjadi glikogen untuk cadangan makanan melalui proses glikogenesis.
Glikogen merupakan simpanan karbohidrat dalam tubuh dan analog dengan amilum pada tumbuhan. Glikogen terdapat didalam hati (sampai 6%) dan otot jarang melampaui jumlah 1%. Tetapi karena massa otot jauh lebih besar daripada hati, maka besarnya simpanan glikogen di otot  bisa mencapai tiga sampai empat kali lebih banyak. Seperti amilum, glikogen merupakan polimer µ-D-Glukosa yang bercabang.
Glikogen otot adalah sumber heksosa untuk proses glikolisis di dalam otot itu sendiri. Sedangkan glikogen hati adalah simpanan sumber heksosa untuk dikirim keluar guna mempertahankan kadar glukosa darah, khususnya di antara waktu makan. Setelah 12-18 jam puasa, hampir semua simpanan glikogen hati terkuras. Tetapi glikogen otot hanya terkuras setelah seseorang melakukan olahraga yang berat dan lama.
Rangkaian proses terjadinya glikogenesis digambarkan sebagai berikut:
1.    Glukosa mengalami fosforilasi menjadi glukosa 6-fosfat (reaksi yang lazim terjadi juga pada lintasan glikolisis). Di otot reaksi ini dikatalisir oleh heksokinase sedangkan di hati oleh glukokinase.

2.    Glukosa 6-fosfat diubah menjadi glukosa 1-fosfat dalam reaksi dengan bantuan katalisator enzim fosfoglukomutase. Enzim itu sendiri akan mengalami fosforilasi dan gugus fosfo akan mengambil bagian di dalam reaksi reversible yang intermediatnya adalah glukosa 1,6-bifosfat.

Enz-P + Glukosa 6-fosfat «Enz + Glukosa 1,6-bifosfat « Enz-P + Glukosa 1-fosfat

3.    Selanjutnya glukosa 1-fosfat bereaksi dengan uridin trifosfat (UTP) untuk membentuk uridin difosfat glukosa (UDPGlc). Reaksi ini dikatalisir oleh enzim UDPGlc pirofosforilase.

UTP + Glukosa 1-fosfat « UDPGlc + PPi
Uridin difosfat glukosa (UDPGlc) (dipetik dari: Murray dkk. Biokimia Harper)
Lintasan glikogenesis dan glikogenolisis (dipetik dari: Murray dkk. Biokimia Harper)

4.    Hidrolisis pirofosfat inorganic berikutnya oleh enzim pirofosfatase inorganik akan menarik reaksi kea rah kanan persamaan reaksi

5.    Atom C1 pada glukosa yang diaktifkan oleh UDPGlc membentuk ikatan glikosidik dengan atom C4 pada residu glukosa terminal glikogen, sehingga membebaskan uridin difosfat. Reaksi ini dikatalisir oleh enzim glikogen sintase. Molekul glikogen yang sudah ada sebelumnya (disebut glikogen primer) harus ada untuk memulai reaksi ini. Glikogen primer selanjutnya dapat terbentuk pada primer protein yang dikenal sebagai glikogenin.

UDPGlc + (C6)n à UDP + (C6)n+1
         Glikogen       Glikogen

Residu glukosa yang lebih lanjut melekat pada posisi 1à4 untuk membentuk rantai pendek yang diaktifkan oleh glikogen sintase. Pada otot rangka glikogenin tetap melekat pada pusat molekul glikogen, sedangkan di hati terdapat jumlah molekul glikogen yang melebihi jumlah molekul glikogenin.
6.    Setelah rantai dari glikogen primer diperpanjang dengan penambahan glukosa tersebut hingga mencapai minimal 11 residu glukosa, maka enzim pembentuk cabang memindahkan bagian dari rantai 1à4 (panjang minimal 6 residu glukosa) pada rantai yang berdekatan untuk membentuk rangkaian 1à6 sehingga membuat titik cabang pada molekul tersebut. Cabang-cabang ini akan tumbuh dengan penambahan lebih lanjut 1àglukosil dan pembentukan cabang selanjutnya. Setelah jumlah residu terminal yang non reduktif bertambah, jumlah total tapak reaktif dalam molekul akan meningkat sehingga akan mempercepat glikogenesis maupun glikogenolisis.

Tahap-tahap perangkaian glukosa demi glukosa digambarkan pada bagan berikut.
Biosintesis glikogen (dipetik dari: Murray dkk. Biokimia Harper)
Tampak bahwa setiap penambahan 1 glukosa pada glikogen dikatalisir oleh enzim glikogen sintase. Sekelompok glukosa dalam rangkaian linier dapat putus dari glikogen induknya dan berpindah tempat untuk membentuk cabang. Enzim yang berperan dalam tahap ini adalah enzim pembentuk cabang (branching enzyme).

Glikogenolisis
Jika glukosa dari diet tidak dapat mencukupi kebutuhan, maka glikogen harus dipecah untuk mendapatkan glukosa sebagai sumber energi. Proses ini dinamakan glikogenolisis. Glikogenolisis seakan-akan kebalikan dari glikogenesis, akan tetapi sebenarnya tidak demikian. Untuk memutuskan ikatan glukosa satu demi satu dari glikogen diperlukan enzim fosforilase. Enzim ini spesifik untuk proses fosforolisis rangkaian 1à4 glikogen untuk menghasilkan glukosa 1-fosfat. Residu glukosil terminal pada rantai paling luar molekul glikogen dibuang secara berurutan sampai kurang lebih ada 4 buah residu glukosa yang tersisa pada tiap sisi cabang 1à6.
(C6)n + Pi à (C6)n-1 + Glukosa 1-fosfat
                                       Glikogen      Glikogen

Glukan transferase dibutuhkan sebagai katalisator pemindahan unit trisakarida dari satu cabang ke cabang lainnya sehingga membuat titik cabang 1à6 terpajan. Hidrolisis ikatan 1à6 memerlukan kerja enzim enzim pemutus cabang (debranching enzyme) yang spesifik. Dengan pemutusan cabang tersebut, maka kerja enzim fosforilase selanjutnya dapat berlangsung.
Tahap-tahap glikogenolisis (dipetik dari: Murray dkk. Biokimia Harper)


Glukoneogenesis
Glukoneogenesis terjadi jika sumber energi dari karbohidrat tidak tersedia lagi. Maka tubuh adalah menggunakan lemak sebagai sumber energi. Jika lemak juga tak tersedia, barulah memecah protein untuk energi yang sesungguhnya protein berperan pokok sebagai pembangun tubuh.
Jadi bisa disimpulkan bahwa glukoneogenesis adalah proses pembentukan glukosa dari senyawa-senyawa non karbohidrat, bisa dari lipid maupun protein.
Secara ringkas, jalur glukoneogenesis dari bahan lipid maupun protein dijelaskan sebagai berikut:
1.       Lipid terpecah menjadi komponen penyusunnya yaitu asam lemak dan gliserol. Asam lemak dapat dioksidasi menjadi asetil KoA. Selanjutnya asetil KoA masuk dalam siklus Kreb’s. Sementara itu gliserol masuk dalam jalur glikolisis.
2.       Untuk protein, asam-asam amino penyusunnya akan masuk ke dalam siklus Kreb’s.

Ringkasan jalur glukoneogenesis (dipetik dari: Murray dkk. Biokimia Harper)


Lintasan metabolisme karbohidrat, lipid dan protein. Perhatikan jalur glukoneogenesis yaitu masuknya lipid dan asam amino ke dalam lintasan (dipetik dari: Murray dkk. Biokimia Harper)
Glukoneogenesis dari bahan protein. Dalam hal ini protein telah dipecah menjadi berbagai macam asam amino (dipetik dari: Murray dkk. Biokimia Harper)

Energi yang dihasilkan dalam siklus asam sitrat
Pada proses oksidasi asetil KoA, dihasilkan 3 molekul NADH dan 1 FADH2. Sejumlah ekuivalen pereduksi dipindahkan ke rantai respirasi dalam membran interna mitokondria. Ekuivalen pereduksi NADH menghasilkan 3 ikatan fosfat berenergi tinggi (esterifikasi ADP menjadi ATP). FADH2 menghasilkan 2 ikatan fosfat berenergi tinggi. Fosfat berenergi tinggi juga dihasilkan pada tingkat siklus (tingkat substrat) saat suksinil KoA diubah menjadi suksinat.
Dengan demikian rincian energi yang dihasilkan dalam siklus asam sitrat adalah:
1. Tiga molekul NADH, menghasilkan                  : 3 X 3P                  =  9P
2. Satu molekul FADH2, menghasilkan                 : 1 x 2P                   =  2P
3. Pada tingkat substrat                                                                 =  1P
Jumlah                                                                                       = 12P

Satu siklus Kreb’s akan menghasilkan energi 3P + 3P + 1P + 2P + 3P    = 12P.
Kalau kita hubungkan jalur glikolisis, oksidasi piruvat dan siklus Kreb’s, akan dapat kita hitung bahwa 1 mol glukosa jika dibakar sempurna (aerob) akan menghasilkan energi dengan rincian sebagai berikut:
1.      Glikolisis                                    :  8P
2.      Oksidasi piruvat (2 x 3P)               :  6P
3.      Siklus Kreb’s (2 x 12P)                 : 24P
Jumlah                                            : 38P

Glikogenesis
Tahap pertama metabolisme karbohidrat adalah pemecahan glukosa (glikolisis) menjadi piruvat. Selanjutnya piruvat dioksidasi menjadi asetil KoA. Akhirnya asetil KoA masuk ke dalam rangkaian siklus asam sitrat untuk dikatabolisir menjadi energi.
Proses di atas terjadi jika kita membutuhkan energi, misalnya untuk berpikir, mencerna makanan, bekerja dan sebagainya. Jika jumlah glukosa melampaui kebutuhan, maka dirangkai menjadi glikogen untuk cadangan makanan melalui proses glikogenesis.
Glikogen merupakan simpanan karbohidrat dalam tubuh dan analog dengan amilum pada tumbuhan. Glikogen terdapat didalam hati (sampai 6%) dan otot jarang melampaui jumlah 1%. Tetapi karena massa otot jauh lebih besar daripada hati, maka besarnya simpanan glikogen di otot  bisa mencapai tiga sampai empat kali lebih banyak. Seperti amilum, glikogen merupakan polimer µ-D-Glukosa yang bercabang.
Glikogen otot adalah sumber heksosa untuk proses glikolisis di dalam otot itu sendiri. Sedangkan glikogen hati adalah simpanan sumber heksosa untuk dikirim keluar guna mempertahankan kadar glukosa darah, khususnya di antara waktu makan. Setelah 12-18 jam puasa, hampir semua simpanan glikogen hati terkuras. Tetapi glikogen otot hanya terkuras setelah seseorang melakukan olahraga yang berat dan lama.
Rangkaian proses terjadinya glikogenesis digambarkan sebagai berikut:
1.    Glukosa mengalami fosforilasi menjadi glukosa 6-fosfat (reaksi yang lazim terjadi juga pada lintasan glikolisis). Di otot reaksi ini dikatalisir oleh heksokinase sedangkan di hati oleh glukokinase.

2.    Glukosa 6-fosfat diubah menjadi glukosa 1-fosfat dalam reaksi dengan bantuan katalisator enzim fosfoglukomutase. Enzim itu sendiri akan mengalami fosforilasi dan gugus fosfo akan mengambil bagian di dalam reaksi reversible yang intermediatnya adalah glukosa 1,6-bifosfat.

Enz-P + Glukosa 6-fosfat «Enz + Glukosa 1,6-bifosfat « Enz-P + Glukosa 1-fosfat

3.    Selanjutnya glukosa 1-fosfat bereaksi dengan uridin trifosfat (UTP) untuk membentuk uridin difosfat glukosa (UDPGlc). Reaksi ini dikatalisir oleh enzim UDPGlc pirofosforilase.

UTP + Glukosa 1-fosfat « UDPGlc + PPi
Uridin difosfat glukosa (UDPGlc) (dipetik dari: Murray dkk. Biokimia Harper)
Lintasan glikogenesis dan glikogenolisis (dipetik dari: Murray dkk. Biokimia Harper)

4.    Hidrolisis pirofosfat inorganic berikutnya oleh enzim pirofosfatase inorganik akan menarik reaksi kea rah kanan persamaan reaksi

5.    Atom C1 pada glukosa yang diaktifkan oleh UDPGlc membentuk ikatan glikosidik dengan atom C4 pada residu glukosa terminal glikogen, sehingga membebaskan uridin difosfat. Reaksi ini dikatalisir oleh enzim glikogen sintase. Molekul glikogen yang sudah ada sebelumnya (disebut glikogen primer) harus ada untuk memulai reaksi ini. Glikogen primer selanjutnya dapat terbentuk pada primer protein yang dikenal sebagai glikogenin.

UDPGlc + (C6)n à UDP + (C6)n+1
         Glikogen       Glikogen

Residu glukosa yang lebih lanjut melekat pada posisi 1à4 untuk membentuk rantai pendek yang diaktifkan oleh glikogen sintase. Pada otot rangka glikogenin tetap melekat pada pusat molekul glikogen, sedangkan di hati terdapat jumlah molekul glikogen yang melebihi jumlah molekul glikogenin.
6.    Setelah rantai dari glikogen primer diperpanjang dengan penambahan glukosa tersebut hingga mencapai minimal 11 residu glukosa, maka enzim pembentuk cabang memindahkan bagian dari rantai 1à4 (panjang minimal 6 residu glukosa) pada rantai yang berdekatan untuk membentuk rangkaian 1à6 sehingga membuat titik cabang pada molekul tersebut. Cabang-cabang ini akan tumbuh dengan penambahan lebih lanjut 1àglukosil dan pembentukan cabang selanjutnya. Setelah jumlah residu terminal yang non reduktif bertambah, jumlah total tapak reaktif dalam molekul akan meningkat sehingga akan mempercepat glikogenesis maupun glikogenolisis.

Tahap-tahap perangkaian glukosa demi glukosa digambarkan pada bagan berikut.
Biosintesis glikogen (dipetik dari: Murray dkk. Biokimia Harper)
Tampak bahwa setiap penambahan 1 glukosa pada glikogen dikatalisir oleh enzim glikogen sintase. Sekelompok glukosa dalam rangkaian linier dapat putus dari glikogen induknya dan berpindah tempat untuk membentuk cabang. Enzim yang berperan dalam tahap ini adalah enzim pembentuk cabang (branching enzyme).

Glikogenolisis
Jika glukosa dari diet tidak dapat mencukupi kebutuhan, maka glikogen harus dipecah untuk mendapatkan glukosa sebagai sumber energi. Proses ini dinamakan glikogenolisis. Glikogenolisis seakan-akan kebalikan dari glikogenesis, akan tetapi sebenarnya tidak demikian. Untuk memutuskan ikatan glukosa satu demi satu dari glikogen diperlukan enzim fosforilase. Enzim ini spesifik untuk proses fosforolisis rangkaian 1à4 glikogen untuk menghasilkan glukosa 1-fosfat. Residu glukosil terminal pada rantai paling luar molekul glikogen dibuang secara berurutan sampai kurang lebih ada 4 buah residu glukosa yang tersisa pada tiap sisi cabang 1à6.
(C6)n + Pi à (C6)n-1 + Glukosa 1-fosfat
                                       Glikogen      Glikogen

Glukan transferase dibutuhkan sebagai katalisator pemindahan unit trisakarida dari satu cabang ke cabang lainnya sehingga membuat titik cabang 1à6 terpajan. Hidrolisis ikatan 1à6 memerlukan kerja enzim enzim pemutus cabang (debranching enzyme) yang spesifik. Dengan pemutusan cabang tersebut, maka kerja enzim fosforilase selanjutnya dapat berlangsung.
Tahap-tahap glikogenolisis (dipetik dari: Murray dkk. Biokimia Harper)


Glukoneogenesis
Glukoneogenesis terjadi jika sumber energi dari karbohidrat tidak tersedia lagi. Maka tubuh adalah menggunakan lemak sebagai sumber energi. Jika lemak juga tak tersedia, barulah memecah protein untuk energi yang sesungguhnya protein berperan pokok sebagai pembangun tubuh.
Jadi bisa disimpulkan bahwa glukoneogenesis adalah proses pembentukan glukosa dari senyawa-senyawa non karbohidrat, bisa dari lipid maupun protein.
Secara ringkas, jalur glukoneogenesis dari bahan lipid maupun protein dijelaskan sebagai berikut:
1.       Lipid terpecah menjadi komponen penyusunnya yaitu asam lemak dan gliserol. Asam lemak dapat dioksidasi menjadi asetil KoA. Selanjutnya asetil KoA masuk dalam siklus Kreb’s. Sementara itu gliserol masuk dalam jalur glikolisis.
2.       Untuk protein, asam-asam amino penyusunnya akan masuk ke dalam siklus Kreb’s.

Ringkasan jalur glukoneogenesis (dipetik dari: Murray dkk. Biokimia Harper)


Lintasan metabolisme karbohidrat, lipid dan protein. Perhatikan jalur glukoneogenesis yaitu masuknya lipid dan asam amino ke dalam lintasan (dipetik dari: Murray dkk. Biokimia Harper)
Glukoneogenesis dari bahan protein. Dalam hal ini protein telah dipecah menjadi berbagai macam asam amino (dipetik dari: Murray dkk. Biokimia Harper)

0 komentar:

Posting Komentar

Welcome Home

Be Enjoy and Take Easy Cak..

Total Tayangan Halaman

Diberdayakan oleh Blogger.

Mengenai Saya

Foto Saya
Pertanian Cak
Malang, JawaTimur, Indonesia
TIDAK perduli jika kamu dan kamu menilai aku bagaimana. Tuhan YESUS yang hanya bisa menilai hidup ku.
Lihat profil lengkapku

Followers

Copyright © / PERTANIAN CAK

Template by : Urangkurai / powered by :blogger